Complete Convergence for Sums of Arrays of Random Elements

نویسنده

  • SOO HAK SUNG
چکیده

Let {Xni} be an array of rowwise independent B-valued random elements and {an} constants such that 0 < an ↑ ∞. Under some moment conditions for the array, it is shown that ∑n i=1Xni/an converges to 0 completely if and only if ∑n i=1Xni/an converges to 0 in probability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complete Convergence and Some Maximal Inequalities for Weighted Sums of Random Variables

Let  be a sequence of arbitrary random variables with  and , for every  and  be an array of real numbers. We will obtain two maximal inequalities for partial sums and weighted sums of random variables and also, we will prove complete convergence for weighted sums , under some conditions on  and sequence .

متن کامل

On the Complete Convergence ofWeighted Sums for Dependent Random Variables

We study the limiting behavior of weighted sums for negatively associated (NA) random variables. We extend results in Wu (1999) and a theorem in Chow and Lai (1973) for NA random variables.

متن کامل

Complete Convergence for Weighted Sums of Arrays of Random Elements

Let {Xnk: k,n 1,2 be an array of row-wise independent random elements in a separable Banach space. Let {ank: k,n 1,2 be an array of Voo voo R+ real numbers such that /-k=l lank -< 1 and Ln=l exp(-a/A < for each c e where n V 2 Voo An kk=l ank. The complete convergence of l’k=l ank Xnk is obtained under varying moment and distribution conditions on the random elements. In particular, laws of lar...

متن کامل

Complete Moment Convergence of Weighted Sums for Arrays of Rowwise φ-Mixing Random Variables

The complete moment convergence of weighted sums for arrays of rowwise φ-mixing random variables is investigated. By using moment inequality and truncation method, the sufficient conditions for complete moment convergence of weighted sums for arrays of rowwise φ-mixing random variables are obtained. The results of Ahmed et al. 2002 are complemented. As an application, the complete moment conver...

متن کامل

Strong Convergence of Weighted Sums for Negatively Orthant Dependent Random Variables

We discuss in this paper the strong convergence for weighted sums of negatively orthant dependent (NOD) random variables by generalized Gaussian techniques. As a corollary, a Cesaro law of large numbers of i.i.d. random variables is extended in NOD setting by generalized Gaussian techniques.

متن کامل

Complete convergence for weighted sums of arrays of rowwise rho-mixing random variables

Let {Xni , i≥ 1,n≥ 1} be an array of rowwise ρ̃-mixing random variables. Some sufficient conditions for complete convergence for weighted sums of arrays of rowwise ρ̃-mixing random variables are presented without assumptions of identical distribution. As applications, the Baum and Katz type result and the Marcinkiewicz-Zygmund type strong law of large numbers for sequences of ρ̃-mixing random vari...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000